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Abstract The “linearity critique” of endogenous growth models is presented in
a general context of an arbitrary growth model and reassessed. It is argued that
presence of linearities is not a valid criterion for rejecting growth models. Exis-
tence of exponential/geometrical steady-state growth (i.e. of a balanced growth
path with strictly positive growth rates) necessarily requires some knife-edge con-
dition which is not satisfied by typical parameter values. Hence, balanced growth
paths are fragile and sensitive to smallest disturbances in parameter values. Add-
ing higher order differential/difference equations to a model does not change the
knife-edge character of steady-state growth.

Keywords Long-run economic growth · Knife-edge condition · Balanced growth
path · Linearity critique
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1 Introduction

The starting point of this paper is the “linearity critique”, in its appealing form due
to Jones (2005). Jones argues that all growth models ever discussed in literature
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which were able to deliver steady-state growth, necessarily contained at least one
linear differential/difference equation. This is criticized, because strict linearity is
a knife-edge assumption, equivalent to requesting that in an equation of form

Ẋ = αXφ, (1)

the parameter φ value exactly equals unity. Apparently, the long-run dynamics of
the X variable would be qualitatively different if φ < 1 or φ > 1.

For the sake of clarity, let us now and until the end of this paper, define a
“knife-edge condition” as a condition imposed on parameter values, such that the
set of values satisfying this condition has an empty interior in the space of all pos-
sible values. Parameter values that are requested to satisfy a particular knife-edge
condition would also be referred to in text as “non-typical”.

An important remark is that we will find knife-edge conditions in the form of
equality constraints. Hence, if the parameter space is finite dimensional (a subset
of R

n), the set of values satisfying a knife-edge condition would automatically be
of Lebesgue measure zero in the given space.

The main point of this paper is to inspect the following claim due to Jones
(2005, p. 62):

What is not sufficiently well-appreciated, however, is that any model of
sustained exponential growth requires such a knife-edge condition. Neo-
classical growth models [as opposed to endogenous growth models – J.G.]
are not immune to this criticism; they just assume the linearity to be com-
pletely unmotivated.

This claim shall be supported by an explicit proof, that it is the steady-state
growth property itself, that is “knife-edge” or requires “non-typical” parameter
values.1 We shall generalize the standard growth framework and prove that even
introducing differential/difference equations of an arbitrary finite order does not
solve the fundamental problem: sustained exponential/geometrical growth (i.e.,
existence of a balanced growth path with strictly positive growth rates) necessarily
relies upon knife-edge assumptions.

Our finding supports the third of Temple’s (2003) five “obvious” rules for
thinking about long-run growth: “Do not dismiss a model of growth because the
long-run outcomes depend on knife-edge assumptions”. Indeed, we claim that there
is no alternative if one wants the model to possess the steady-state growth property.
Thus, this paper adds a further qualification to Temple’s view that the issue of knife-
edge assumptions in growth models does not deserve the attention it has recently
received.2 No discrimination between models can be made on these grounds.

However, given that all growth models share knife-edge assumptions, and there-
fore, smallest parameter shifts are enough to reverse their long-run dynamics and
eliminate steady-state growth—we come to a pessimistic conclusion that growth
is very fragile.

To reinforce our argumentation, let us also point out that the knife-edge char-
acter of the “φ = 1 in equation (1)”-type assumptions consists not only in the

1 Exponential growth is strikingly consistent with some of the well-documented empirical
data, however. See, e.g., the figure on page 42 in Jones (2005).

2 Knife-edge conditions in economic growth models have been reviewed and classified by,
among others, Eicher and Turnovsky (1999), Jones (1999), Li (2000), and Christiaans (2004).
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fact that the set of parameter values satisfying them has an empty interior (or is of
Lebesgue measure zero) in the set of all possible parameter values, but also in the
fact that they bound away from each other cases of qualitatively different dynamic
behavior of the model. Most likely, these would be explosive cases (φ > 1), and
cases where the growth rates gradually fall down to zero (φ < 1).

To our best knowledge, the fundamental result of this paper has not yet been
proven in its generality. Closely related literature includes Christiaans (2004) who
provides the proof for the specific case of continuous-time models with three state
variables (physical capital, technology, population) and differential equations of
first order only; and Laffargue (2004) who proves it for discrete-time models with
up to two lags, while concentrating on a completely different issue—solving macro-
econometric models with perfect foresight—and thus neither attaches any partic-
ular weight to the mathematical result, nor gives an interpretation for it.

In the following section, we rephrase the “linearity critique” in the context of a
generalized growth model. In section 3, we prove the general theorem that steady-
state growth is a knife-edge assumption. Section 4 contains further discussion and
concluding remarks.

2 The “singularity” critique

Let us consider a generalized continuous-time model of economic growth. The var-
iant we are going to analyze is standard in the sense that its steady-state properties
are determined by a system of first order autonomous differential equations of the
form

X̂ = F(X), X (0) given. (2)

By X = (X1, X2, . . . , Xn) we denote a vector of n state variables. Each i th variable
Xi is assumed to be twice continuously differentiable with respect to time. By Ẋ
we denote a vector of Xi ’s first order time derivatives, and by X̂ we denote a vector
of their first order log-time derivatives (growth rates). It is assumed that all Xi ’s are
strictly positive.3 We shall concentrate on autonomous differential equations only,
since it is natural for economists to look for general laws that are valid irrespective
of time.

A further remark is that in (2), we ignore control (choice, decision) variables.
Although these are vital ingredients of economic models which include optimi-
zation—as most contemporary growth models do—they can be ruled out from
present considerations, since we are interested in the long-run dynamics only.

Assuming that F ∈ C1(Rn) and differentiating both sides of (2) with respect
to time yields

˙̂X = DF(X) · Ẋ . (3)

The right hand side of (3) is linear with respect to Ẋ . We shall adopt the follow-
ing definition of a steady state: it is a state in which all growth rates X̂i are constant.

3 One can argue that taking (2) already limits the analysis, since we assume that the general
equation �(X, Ẋ) = 0 can be solved explicitly for Ẋ . This problem can be resolved for almost
all Ẋ using the Implicit Function Theorem, however. Since this procedure is not revealing and
sometimes cumbersome, we purposefully limit ourselves to (2).
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Imposing a steady state is equivalent to setting all ˙̂Xi ’s equal to zero. Observing
that in the steady state, DF(X) · Ẋ = 0, we state the “linearity critique”:

Ẋ = 0 or DF(X) is singular. (4)

From (4), we see that the “linearity” critique discussed in literature should
rather be called “singularity” critique: it is singularity of the DF(X) matrix that is
inevitable if one wants to obtain positive steady-state growth in any state variable.
Namely, for models propelled by first order autonomous differential equations,
exponential growth requires fulfilling the following knife-edge condition: in the
steady state, the determinant of the DF(X) matrix (i.e., the Jacobian of the F
mapping) exactly vanishes.4

Note that here, as opposed to, e.g., Jones (1999) who only considers Cobb-
Douglas functions with a finite number of parameters (say p), so that the knife-edge
conditions are imposed on a subset of R

p, our parameter space is C1(Rn)—which
is an infinite dimensional function space. Lebesgue measure cannot be applied on
such space, but it remains clear that the set F ⊂ C1(Rn) of functions which have
a zero Jacobian everywhere along the time path of X , has an empty interior. To
show this, let F ∈ F . For every ε > 0 there exists a function Fε ∈ C1(Rn) such
that ||Fε − F ||C1(Rn) < ε and det(DFε(X)) �= 0 for some X along its time path
{X (t)}∞t=0.5 Thus, Fε /∈ F , so F has an empty interior.

Let us now manipulate (3) to obtain a direct formula for X̂ . We shall multiply
all terms in each i th column (i = 1, 2, . . . , n) of the DF(X) matrix by Xi > 0
and denote the resultant matrix by �(X). Notice that

det �(X) =
( n∏

i=1

Xi

)
det DF(X). (5)

It follows that det �(X) = 0 ⇔ det DF(X) = 0, i.e., the singularity/non-singu-
larity of DF(X) is inherited by �(X). It is also obtained that

DF(X) · Ẋ = 0 ⇔ �(X) · X̂ = 0. (6)

The �(X) matrix proves useful in the formulation of the following claim.
The claim goes as follows. If the matrix �(X) is singular, there exists a con-

tinuum of X̂ vectors—steady-state growth rates—located along the eigenspace
associated with the zero eigenvalue of �(X).6

4 A slightly less general result than this can be found in Christiaans (2004), Proposition 1.
5 One may wonder how to construct the Fε function. For example, one could apply the fol-

lowing procedure. First, fix an X from the time path such that ||X || > 1. This is always possible,
because we have assumed exponential growth in at least one state variable. Denote M = 2||X ||,
and then take Fε(X) = F(X) + (ε/M)X . Observe that DFε(X) = DF(X) + (ε/M)I . In
result, ||Fε − F ||C1(Rn) = ||Fε − F ||∞ + ||D(Fε − F)||∞ = (ε/M)||X || + (ε/M)||I ||∞ =
(ε/2) + (ε/M) < ε. Moreover, det(DFε(X)) = det(DF(X) + (ε/M)I ) �= 0 unless −(ε/M) is
an eigenvalue of DF(X). Limiting the scope of our reasoning to ε’s small enough (in the end,
we are interested only in arbitrarily small ε’s anyway) rules out this unwanted possibility and
thus guarantees det(DFε(X)) �= 0.

6 As an example, take a family of Jones’ (1995) models, indexed by the population growth
rate n ≥ 0.
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If parameters of the model happen to fulfill multiple knife-edge conditions, so
that the zero eigenvalue is multifold, then this eigenspace is of a dimension higher
than 1.7

Let us again emphasize that the parameter values, satisfying the singularity
condition are non-typical, that is, the set of such values has an empty interior in the
space of all possible values. In consequence, we may say that if there is randomness
in their determination, then the singularity condition is typically violated.

What is more, if the F function is not Cobb–Douglas, then �(X) depends on X .
Thus, as the variables contained in X grow exponentially over time, the singularity
condition still needs to be satisfied for all X along the balanced growth path. This
accounts for an indeed stringent condition on parameter values and at the same
time disqualifies many functional forms of F .

This corollary actually builds up to a version of Uzawa’s (1961) Steady-State
Growth Theorem: if the production function is not Cobb-Douglas, then while the
state variables (Xi ’s) grow at a constant rate, partial derivatives in DF’s columns
should change proportionately, in a way that the determinant of DF(X) remains
zero at all times.

3 The knife-edge assumption of steady-state growth

The results of the previous section can be generalized. We shall consider models
both in continuous and in discrete time. We shall also include differential/difference
equations of an arbitrary finite order. Although this point may seem overly theo-
retical—economic growth models typically include only first-order equations8—it
remains worth emphasizing that there does not exist a way to circumvent knife-edge
assumptions and yet obtain positive long-run growth rates.

Intuitively, the above point is true because of the distinguishing feature of
an exponential function, or equivalently, a geometrical sequence. An exponential
function is a linear function of its derivative; a geometrical sequence, multiplied
by a constant, remains a geometrical sequence.

3.1 The theorem (continuous-time version)

We shall now prove the following general theorem.

Theorem 1 It is impossible to construct a model, propelled by differential equa-
tions, in which there exists a steady state that

a) implies that some state variables grow exponentially at a constant positive rate,
b) is obtained without knife-edge (singularity) assumptions.

Proof We shall assume the former and show impossibility of the latter.

7 As an example, take a family of neoclassical growth models, indexed by the population
growth rate n ≥ 0 and the exogenous technology growth rate g ≥ 0.

8 It is straightforward to borrow an interpretation of second time derivatives from classical
physics: we would not only be talking about the pace of accumulation of a certain stock variable,
but also about its acceleration.
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For the sake of the proof, let us consider a generalized type (2) differential
model that includes higher order time derivatives of the state variables, contained
in the vector X = (X1, X2, . . . , Xn). Each i th variable Xi is assumed to be at least
m + 1 times continuously differentiable with respect to time. By X (k), we shall
denote the vector of kth time derivatives of X . The model reads:

X (m) = �(X, Ẋ , . . . , X (m−1)), X (0), Ẋ(0), . . . , X (m−1)(0) given, (7)

where m is an arbitrary positive integer.9 The mapping � : R
mn → R

n is as-
sumed to be at least once continuously differentiable. We shall consider the whole
C1(Rmn; R

n) function space to be our “parameter space”.
According to a theorem fundamental to differential equations (see Arnold

1975), we can decompose our system (7) into a system of mn differential equations,
(m − 1)n of which linear, and write

Ẋ = Y1

Ẏ1 = Y2

... (8)

Ẏm−2 = Ym−1

Ẏm−1 = �(X, Y1, Y2, . . . , Ym−1).

Now, we shall proceed with the derivations for each i th state variable separately
(i = 1, 2, . . . , n). We observe that the exponential growth condition requires

˙̂Xi = 0 ⇒ Ẏ1,i Xi = Ẋi Y1,i ⇒ Ŷ1,i = X̂i . (9)

If X̂i = 0, then slightly abusing notation, we write Ŷk,i = 0 for all k as well. By
forward recursion, it is automatically obtained that X̂i = Ŷ1,i = · · · = Ŷm−1,i . We
shall now pass to the last equation.

Imposing that ˙̂Ym−1,i = 0 yields

X̂i�i = Ŷm−1,i�i

= d�i

dt
= DX�i · Ẋ + DY1�i · Ẏ1 + · · · + DYm−1�i · Ẏm−1, (10)

where �i denotes the i th coordinate function of the � mapping, DX�i denotes
the vector of n first order partial derivatives of �i with respect to all Xi ’s. The
same notational convention applies to Yk,i ’s. Arguments of the functions have
been omitted for convenience.

With all vectors DX�i , DY1�i , . . . , DYm−1�i , we redo the same algebraic
manipulations as we did with DF in (3), that is, we multiply each j th element
of the vector by X j , and Yk, j respectively, and denote the resulting vector by �k,i ,
where k = 0, 1, 2, . . . , m − 1. It is then obtained that

X̂i�i = �0,i · X̂ + �1,i · Ŷ1 + · · · + �m−1,i · Ŷm−1 (11)�� (as X̂ = Ŷ1 = · · · = Ŷm−1)

��,i · X̂ = 0, (12)

9 Again, it is possible to get an explicit solution for X (m) locally almost everywhere. The
Implicit Function Theorem is used to prove this claim.
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where the vector ��,i = �0,i + · · · + �m−1,i − �i ei , and ei = (0, . . . , 0, 1,
0, . . . , 0) is the i th unit vector.

We now combine these n symmetrical results to get the final result:

�� · X̂ = 0, (13)

where we have denoted

�� =

⎛
⎜⎜⎝

��,1
��,2

...
��,n

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

�0,1 + · · · + �m−1,1 − �1e1
�0,2 + · · · + �m−1,2 − �2e2

...
�0,n + · · · + �m−1,n − �nen

⎞
⎟⎟⎠ . (14)

Since we assumed X̂ �= 0, the n × n matrix �� is necessarily singular.
To prove that singularity is indeed a knife-edge condition, we take F ⊂

C1(Rmn; R
n) to be the set of functions � such that their associated det(��) = 0.

Let � ∈ F . For every ε > 0 there exists a function �ε ∈ C1(Rmn; R
n), to-

gether with an associated matrix �ε,� such that ||�ε − �||C1(Rmn;Rn) < ε and
det(�ε,�) �= 0 for some X along the time path.10 Thus, �ε /∈ F , so F has an
empty interior. 	


Equation (13) is the central result of this paper, albeit the final “impossibility”
conclusion in its core is very much alike (4). If the knife-edge condition that ��

be singular is satisfied, there emerge a continuum of steady states along the space
spanned by the eigenvectors associated with ��’s zero eigenvalue. If the knife-
edge singularity condition is not satisfied, which happens in the typical case, then
the only steady state is the one with zero growth.

Let us also emphasize, that for non-Cobb-Douglas � functions, �� becomes a
non-trivial function of the vector (X, Ẋ , . . . , X (m−1)). In such case, the facts that
the singularity condition imposed on �� is assumed to hold at all times, and that
arguments of the �� function evolve in time, together constitute a very stringent
condition on �’s parameters and effectively rule out numerous functional forms
of �.

As m was arbitrary, the main result applies to systems of differential equations
of any finite order.

3.2 The theorem (discrete-time version)

We shall now prove that a version of the above theorem holds also if the model is
set up in discrete time.

Theorem 2 It is impossible to construct a model, propelled by difference equa-
tions, in which there exists a steady state that

a) implies that some state variables grow geometrically at a constant positive rate,
b) is obtained without knife-edge assumptions.

10 One could again use the family of functions �ε = � + (ε/M)X , as in footnote 5.
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Proof We shall again assume the former and show impossibility of the latter.
Let us now consider a general discrete-time growth model. Values of the state

variables at time t = −m + 1, −m + 2, . . . ,−1, 0, 1, 2, . . . are contained in the
vector Xt = (X1,t , X2,t , . . . , Xn,t ). The model can be written as:

Xt = �(Xt−1, Xt−2, . . . , Xt−m), X−m+1, X−m+2, . . . , X0 given, (15)

where m is some arbitrary positive integer. We do not have to impose any particular
assumptions on the � mapping. Thus, the space of all mappings � : R

mn+ → R
n+ is

going to be considered our “parameter space”, and denoted by P . We shall endow
the space P with the usual supremum metric but without ruling out functions that
are divergent with respect to this metric.

The model (15) is a discrete-time version of the continuous-time model (7).
The assumption of geometrical steady-state growth implies that for each i th

state variable Xi , there exists a constant γi ∈ (0, 1] such that Xi,t−k = γ k
i · Xi,t

for all k = 1, 2, . . ., and for at least one i , γi < 1. If we denote

γ =

⎛
⎜⎜⎝

γ1 0 · · · 0
0 γ2 · · · 0
...

...
. . .

...
0 0 · · · γn

⎞
⎟⎟⎠ , (16)

then we can write all n symmetrical equations simultaneously in the compact form
Xt−k = γ k · Xt .

Write (15) for two consecutive time periods t and t + 1 to see that for each i th
state variable, it is also true that

�i (γ Xt , γ
2 Xt , . . . , γ

m Xt ) = γi�i (Xt , γ Xt , . . . , γ
m−1 Xt ), (17)

where �i denotes the i th coordinate function of the � mapping.
Now collect all n equations (17), denote �(Xt ) = �(Xt , γ Xt , . . . , γ m−1 Xt )

and make use of (16) to see that

�(γ Xt ) = γ · �(Xt ). (18)

Since we assumed γ �= I and γ �= 0, the � mapping is necessarily homogenous
of degree exactly one with regard to the given diagonal γ matrix.

Degree-one homogeneity is a knife-edge condition. To prove it, let F ⊂ P be
the set of functions � such that their associated � functions are homogenous of
degree one for all Xt along the time path t = 1, 2, . . .. Take � ∈ F . For every
ε > 0 there exists a function �ε ∈ P , together with its associated �ε and γε, such
that ||�ε − �||L∞(Rmn+ ;Rn+) < ε and �ε(γε Xt ) �= γε · �ε(Xt ) for some Xt along

the time path {Xt }t=0,1,2,...
11 Thus, �ε /∈ F , so F has an empty interior. 	


Equation (18) is assumed to hold for all Xt ’s along the time path. For non-Cobb-
Douglas � functions, it becomes an indeed stringent condition on �’s parameters
and rules out numerous functional forms of �.

11 Again, we refer back to footnote 5 for the idea how to construct such functions �ε . For
example, one could use �ε = � + (ε/M)Xt .
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As m was arbitrary, the result applies to systems of difference equations of any
finite order.

At this point, we shall give more intuition on how knife-edge conditions in the
form of singularity and degree-one homogeneity correspond to each other. Let us
assume that the coordinate functions of �, denoted �i (Xt ) ≡ �i (Xt , γ Xt , . . . ,
γ m−1 Xt ) are homogenous of degree one and twice continuously differentiable for
all i . Then, their partial derivatives (∂�i/∂ X j,t )(Xt ), j = 1, 2, . . . , n are homog-
enous of degree zero and by Euler’s theorem on homogenous functions,

n∑
k=1

∂2�i (Xt )

∂ X j,t∂ Xk,t
Xk,t = 0. (19)

When put in matrix notation, (19) reads D2�i (Xt ) · Xt = 0. Since Xt �= 0 by
assumption, this implies singularity of the Hessian of �i . Our reasoning is valid
for all i , of course.

Hence, we see that in the specific case of homogenous and twice continu-
ously differentiable mappings �, degree-one homogeneity implies singularity of
Hessians of the coordinate functions of �. Please note, however, that the main
theorem of this subsection applies to a more general class of mappings � than
discussed in the above paragraph.

4 Discussion

We shall now briefly discuss some of the theoretical issues arising from the above
“impossibility” theorem.12 We shall identify the consequences of the theorem by
confronting it with a few informal rules which seem to be commonly obeyed in
contemporary economic growth theory. The list goes as follows:

• growth models are designed to explain (some) historical data on productivity
and GDP;

• they should generate steady-state growth in productivity and GDP;
• exogenous technology growth (e.g., in the form of a Ȧ = g A equation) should

be avoided;
• strong scale effects should be eliminated;
• models are appreciated more, if they are able to deliver optimistic predictions.

Long-run growth that does not require continued population growth, and does
not hinge upon some exogenously growing factor in production, is certainly a
desirable outcome.

This list is admittedly simplified, but still able to capture some of the vital char-
acteristics of the paradigm in contemporary growth theory. We shall now juxtapose
these points with the fact that steady-state growth is a knife-edge assumption.

Consistency with empirical data is an obvious property of a good economic
theory, and an approximately exponential growth in productivity and GDP in twen-
tieth-century U.S.A. is part of the evidence. The most popular (and natural) way

12 I would like to thank Charles Jones for shifting my attention to some of these discussion
points.



498 J. Growiec

to obtain long-run exponential growth of such variables in a formal model is to
make it a steady-state property. “Long run” is then readily identified with the steady
state, and “short run” – with the transitional dynamics. In such models, however,
knife-edge assumptions are necessary.

The desire to avoid exogenous technology growth gave birth to a wide variety of
models, in which growth is driven endogenously, i.e., via purposeful human capital
accumulation, R&D expenditure, etc. The original linearity assumption has been
shifted from the Ȧ = g A equation to other equations of the model, or disguised
among multiple variables.

Building endogenous growth models without strong scale effects leads either
to semi-endogenous theories in which the long-run growth rate is pinned down by
the exogenous population growth rate (e.g., Jones 1995), or to endogenous growth
models “of the second generation” (e.g., Young 1998) which require multiple knife-
edge conditions.

The last point of the above list is affected by the theorem in the most obvious
way. If one refrains from making knife-edge assumptions, she will no longer be
able to obtain the optimistic prediction of sustained growth.

We shall also address the question whether taking demographics as exoge-
nously given (external to the economy) can alleviate the problem of knife-edge
assumptions. In the light of the main theorem of this paper, the answer is clearly
‘No.’ It is not a way to falsify the linearity critique, but only to circumvent it: one
assumes exponential population growth to be an outside process that nevertheless
drives the long-run dynamics of her model. And what seems realistic in empirical
research, e.g., Jones’ (1995) model explains historical data without imposing any

linearity: Â = λL̂
1−φ

, where L̂ is exogenous, is irrelevant when considering a com-
plete economic theory. To this extent, semi-endogenous growth models are also
not immune to the linearity critique. How can one say, that she has L̇ = nL in
her model, but it is not her assumption? That there is a linearity that drives the
dynamics of the model, but it is outside of the model? Linearity critique applies
to all models which contain Ȧ = g A; hence, it also applies to all models which
contain L̇ = nL . And the argument that “it is a biological fact of nature, that people
reproduce in proportion to their number” (Jones 2003) unfortunately does not stand
the test of endogenization of fertility: an unmotivated knife-edge assumption that
the intertemporal elasticity of substitution in consumption should be exactly one,
is called for (see Jones 2003, or Connolly and Peretto 2003).13

If steady-state exponential growth is a knife-edge condition, then what alterna-
tives do we have? Instead of looking for the least “painful” knife-edge assumption,
we could try to explain long-run growth without relying on steady-state analysis
at all. However, very little has been done in this area. We can only quote Kremer
(1993) and Jones (2001), who argue that the world’s economic history over the
very long run (since one million BC in Kremer; since 25000 BC in Jones) can

13 One could conjecture, of course, that people at large do not optimize over the number of
their children, but follow simple rules of thumb. There are at least two counter-arguments to this
point, however. First, once one endows the agents of her model with utility-maximizing behav-
ior, leaving some of their “propensities” exogenous for reasons other than simplification seems
highly questionable. And second, the enormous fertility drop in the course of the Demographic
Transition certainly does not look like a purely exogenous change in the applied rule of thumb,
or in the propensity to have children.
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be explained like a transitional process, and not a long-run phenomenon in the
traditional steady-state sense.

The result of this paper disqualifies the linearity critique as a method of reject-
ing growth models that contain linear differential equations. We have shown that all
models that generate exponential/geometrical steady-state growth contain knife-
edge assumptions, in some form of linearity, singularity or degree-one homogene-
ity.

On the other hand, the theorem emphasizes fragility of exponential/geometrical
steady-state growth, arising due to its great sensitivity to disturbances in parameter
values.
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